

Oracle BI Publisher Best Practices for SaaS
Environments

O R A C L E W H I T E P A P E R | M A Y 2 0 1 6

ORACLE BI PUBLISHER BEST PRACTICES FOR SAAS ENVIRONMENTS

Table of Contents

Introduction 1

Report Design 1

Report Creation Steps 1

Caching 6

Layout Design 8

Choose the right Template Type 8

BI Publisher Template 9

RTF Template 9

Use tables for pixel perfect positioning of data 9

Use Form Fields 10

Use Style Templates 11

Do not overcomplicate your Layout Template Design 11

Use XPATH 11

XPATH Tuning 12

Layout Tables 12

Sorting and Grouping 12

Handling Large Outputs in PDF format 12

Data Model Design 14

Data Model Creation 14

Data Model Properties 14

What Dataset to use? 16

Leverage Database Capabilities 17

ORACLE BI PUBLISHER BEST PRACTICES FOR SAAS ENVIRONMENTS

Data Caching 17

Triggers 17

Before Data Triggers 17

After Data Triggers 17

Schedule Triggers 17

Best Practices for SQL Dataset 17

Only Return the Data You Need 17

Use Column Aliases to Shorten XML File Length 18

Avoid Using Group Filters in Data Model. Instead enhance Your Query 18

Avoid PL/SQL funtion Calls in WHERE Clauses 18

Avoid Use of the System Dual Table 19

Avoid PL/SQL Calls at the Element Level 19

Avoid Including Multiple Data Sets 20

Avoid Nested Data Sets 20

Avoid In-Line Queries (as summary columns) 21

Avoid Excessive Parameter Bind Values 21

The number of columns selected in SQL should not exceed 100 22

Sorting should be done in the SQL, not during report formatting 22

Avoid having WHERE clause on large tables with only NOT IN or <> 22

SQL Query Tuning 22

Generate Explain Plan 23

Administration Page Configurations 26

Runtime Configurations 26

ORACLE BI PUBLISHER BEST PRACTICES FOR SAAS ENVIRONMENTS

Memory Guard 27

Data Model 29

Scheduling & Delivery 30

How to decide whether to run a Report Online/Offline (Schedule) 30

Scheduler Database Management 31

Scheduling Tips 31

Report Customization 31

Scheduling a Custom Report 34

Viewing a Custom Report 34

Securing Custom Report 34

Troubleshooting Tips 34

Out of Memory Issue 34

Unusually slow throughput from RTF template 35

What logs to capture when report performs poorly on Server 35

How to debug or troubleshoot an RTF template design? 35

Stuck Job Scenario 35

Schedule Job Diagnostics 36

Process to initiate critical Administration changes on BI Publisher Server 36

1 | ORACLE BI PUBLISHER BEST PRACTICES FOR SAAS ENVIRONMENTS

Introduction

Oracle Business Intelligence Publisher is an enterprise reporting solution for creating highly formatted, pixel perfect

reports. It offers a single solution environment to author, manage and deliver a variety of business documents.

Today Oracle BI Publisher is available to customers with Oracle BI Suite Plus and Oracle BI Foundation, while it is

also available standalone as Oracle BI Publisher Enterprise. Today, over 90 Oracle products are integrated with

Oracle BI Publisher for their enterprise reporting requirements. Often these reports are required to process large

amount of data and therefore it is very important that all products and applications and even the end customers

should know the best practices of Oracle BI Publisher. This white paper provides a detailed list of best practices that

are recommended by Oracle while generating reports using Oracle BI Publisher in a Software-as-a-Service (SaaS)

environment.

Report Design

Report Creation Steps

A report author can create a report in Oracle BI Publisher following different paths. However, it is always

recommended to create a data model before you work on the layout design. The steps can be defined as:

1. Create a Data Model (Refer to Data model section)

2. Create a Report and Layout(s)

a. Create a new report from Homepage ñCreateò action menu or from Global Header Menu, map to an

existing data model and then add a layout

2 | ORACLE BI PUBLISHER BEST PRACTICES FOR SAAS ENVIRONMENTS

3 | ORACLE BI PUBLISHER BEST PRACTICES FOR SAAS ENVIRONMENTS

In this report editor page you can either create a new layout using Layout Editor or you can upload RTF,

PDF, Excel, XSL or eText template file. Refer to Layout Design section of this document for the layout

design related best practices.

Important Note

Generate Layout option in Report Editor will automatically create a simple table-based RTF layout that

includes all the fields in the data model. This will enable you to create a tabular report quickly but will

require formatting adjustments. This is not recommended for Production Layout creation.

In the Report Editor, use the List View to set output formats, Default output format, Locale, etc.

b. From Data Model Editor

4 | ORACLE BI PUBLISHER BEST PRACTICES FOR SAAS ENVIRONMENTS

The steps to create report will follow similar step as in a. above

c. From Template Builder

You can login from RTF or Excel Template Builder

Select the data model from catalog and Create a new Report.

Once the report is created, you can work on the layout in Template builder and upload the template to

server using ñUpload Template Asò.

5 | ORACLE BI PUBLISHER BEST PRACTICES FOR SAAS ENVIRONMENTS

Alternatively, you can use a sample XML data, design the template without connecting to BI Publisher

server and then upload the layout template from Report Editor Page.

6 | ORACLE BI PUBLISHER BEST PRACTICES FOR SAAS ENVIRONMENTS

3. Configure Report Properties to control the report execution behavior ïSchedule Only / Run Online and Schedule

It is recommended

¶ For long running reports, Run Report Online option should be unchecked so that the report will not be

available to View online. Such reports can only be scheduled.

¶ In case long running reports are included as ñRun Report Onlineò then Auto Run should be disabled to

avoid running the report with incorrect parameters.

¶ For reports to be run through ESS only, enable ñReport is Controlled by External Applicationò. The

report cannot be run or scheduled from BI Publisher Catalog and can only be submitted by ESS

scheduling user interface.

Caching

7 | ORACLE BI PUBLISHER BEST PRACTICES FOR SAAS ENVIRONMENTS

¶ Enable Data Caching

o Saves XML data for reuse up to the Cache Expiration threshold

o Improved performance with different template/output format

o Not recommended for real-time data

¶ Enable Document Caching

o Better performance

o Consumes more Temp storage space

o Scheduled reports do not use document cache

¶ User Level

o Disable for better performance if data can be shared across users

¶ Cache Duration

o Default is 30 minutes. Once the time limit has expired, the next request for the same report generates

a fresh data set.

4. Translation

If the report requires supporting multiple languages, then you can create translation files and upload from the

Layout Properties.

8 | ORACLE BI PUBLISHER BEST PRACTICES FOR SAAS ENVIRONMENTS

Layout Design

Choose the right Template Type

Oracle BI Publisher offers a variety of layout design template. The table below highlights the scenarios when a

specific layout template is recommended.

BI Publisher Template Å Web based Layout Editor ï no client installation required

Å Best for Management Report ï WYSIWIG experience

Å Interactive Output

Å Wide range of output (PDF, HTML, Excel, PPT, RTF, MHTML)

Å Not recommended for data size above 50 MB

RTF Template Å Easy to create using Template Builder MS Word Add-in

Å Extensible to use XSL code syntax within BI Publisher Code Syntax

Å Wide range of output (PDF, HTML, Excel, PPT, RTF, MHTML)

Å Complex layout design, formulae, calculations

Å For Barcodes, Packing Slips, Invoices, Checks, Complex Charts

Excel Template ¶ Excel format is the only output expected

¶ The data in excel output expects to maintain the cell formatting for number

and date fields

¶ The column width in excel output should remain exactly as designed in

template, creating a pixel perfect printable area in excel output

¶ Use of native excel charts, functions, micros etc

¶ Handle large number of columns in excel output

Å Not recommended for data size above 50 MB

PDF Template Å PDF forms with XML elements mapped to form fields.

Å Directly use Government Forms as Template

Å PDF output only

Å Use Acrobat Professional to Create/Edit Template

Å Not recommended for data size above 10 MB

E-Text Template Å Text output only ï for electronic communication

Å Great for character delimited or fixed position docs (EFT & EDI)

9 | ORACLE BI PUBLISHER BEST PRACTICES FOR SAAS ENVIRONMENTS

Å RTF with table of statements to place fields and separators

Flash Template Å SWF files with BI Publisher data ï for sophisticated interactivity

Å Create in Adobe Flex Builder

XSL Template Å Allows for third party tools and legacy solutions

Note:

¶ Excel templates use excel 97-2003 (.xls) workbook binary format and therefore has a limitation of 65K

rows. A workaround to process more than 65K rows is to split the data into multiple sheets. Alternatively,

we can generate a CSV (comma separated value) output to process more than 65K rows.

¶ There is no support for excel 2007 + (.xslx) workbook binary format today for excel templates.

¶ Excel output can be generated from RTF, Excel and XSL template. Excel output with large amount of data

consumes a large amount of memory irrespective of template type. It is not recommended to create excel

output for reports with more than 50 MB of data.

BI Publisher Template

Å Use Layout Grids to position components ï similar to tables in RTF Templates

Å Layout Grids can be nested

Å Layout Grid Cell can be joined

Å The minimum height of rows can be fixed

Å DO NOT put LARGE tables or pivot tables into Layout Grids as they can affect Performance of the report.

Å Interactivity works best for flat tables or simple nested master-detail data sets

Å Unrelated queries or groups cannot interact

o Disable interactions for unrelated queries in the Configure Events Dialog

RTF Template

Use tables for pixel perfect positioning of data

Use tables to control precisely where field data will appear in the generated document. Use fields in inline text only

for form letters and where text with inline data fields is appropriate like form letters. Donôt try to control the precise

placement of fields with spaces or tabs.

10 | ORACLE BI PUBLISHER BEST PRACTICES FOR SAAS ENVIRONMENTS

Use Form Fields

Å Keep the template clean

Å Supported by the Template Builder Field Browser

Å Can be colored or hidden to help understand the structure

Å Caveat: Word header & footer donôt allow form fields

11 | ORACLE BI PUBLISHER BEST PRACTICES FOR SAAS ENVIRONMENTS

Use Style Templates

Å Achieve consistency in the template and between templates

Do not overcomplicate your Layout Template Design

Å Keep it easy to understand, debug and maintain

Å Have different business documents in different templates

Å Try to limit the logic in templates to simple if or loop statements

Å Use sub templates to simplify and reuse content

Å Many calculations are better performed in the data model

Use XPATH

Å BI Publisher uses XPATH to access data elements

Å DEPARTMENT_NAME is inserted in the template as <?DEPARTMENT_NAME?>

Å <?DEPARTMENT_NAME?> is translated to the XPATH .//DEPARTMENT_NAME

Å .//DEPARTMENT_NAME searches for DEPARTMENT_NAME in the complete sub-tree starting from

current context

12 | ORACLE BI PUBLISHER BEST PRACTICES FOR SAAS ENVIRONMENTS

XPATH Tuning

Å Start with the outer loops and outer most data access.

For example, if there is a nested for-each loop, the outer loop will access the complete XML tree while the

inner loop will only traverse one branch of data and therefore reducing full tree searches will provide bigger

improvements than optimizing access in a small subset of the data.

Fixing the XPATH in a single for-each loop may be all the performance -tuning you need to do.

Layout Tables

Å LARGE tables that span hundreds of pages consume considerable server resources. If possible group the

data and create a table inside each grouping.

Å Do not nest LARGE table inside another table.

Sorting and Gr ouping

ï Recommended to Sort data in the data model. Sorting in RTF template should be avoided.

ï Grouping of data by use of syntax <?for-each-group?> will sort data by default in XSL engine which is

efficient.

ï Checking ñData already sortedò option in the Table Wizard of Word Template Builder will not re-sort data

which will help improve performance.

Handling Large Outputs in PDF format

ï Make use of ñReuse Static Contentò for reports with alternate page with repeating fine prints

13 | ORACLE BI PUBLISHER BEST PRACTICES FOR SAAS ENVIRONMENTS

ï Use zipped Output format when PDF output is extremely large to read or print as single document.

14 | ORACLE BI PUBLISHER BEST PRACTICES FOR SAAS ENVIRONMENTS

Data Model Design

Data Model Creation

To Launch the Data Model Editor from Home Page, Click Data Model under Create Region or from Global Header

Menu, click on NewĄ Data Model.

Data Model Properties

The Data Model properties can be seen as the first option in the Data Model Editor.

Oracle DB Default Package ð Not applicable for SaaS

Database Fetch Size ð Not recommended to edit in SaaS environment.

Query Time Out - applies to SQL query-based data models. If the SQL query is still processing when the time out
value is met, the error "Failed to retrieve data xml." is returned. Enter a value in seconds. If you do not enter a
value for this data model, the value defined in Administration page is used. The timeout defaults to 600 seconds.

IMPORTANT NOTE - WebLogic Server has a default time out of 600 seconds for each thread that spans
for a request. When a query exceeds 600 seconds, WebLogic Server marks the thread as "Stuck". When
the number of Stuck threads reaches 25, the server shuts down. To avoid this problem, ensure that your
SQL execution time does not exceed the WebLogic Server thread time out.

15 | ORACLE BI PUBLISHER BEST PRACTICES FOR SAAS ENVIRONMENTS

Scalable Mode ð Processing large data sets requires the use of large amounts of RAM. To prevent running out of
memory, activate scalable mode for the data engine. In scalable mode, the data engine takes advantage of disk
space when it processes the data. Setting this to ON will impact performance, but guard against out of memory
errors. For SaaS environments, Scalable Mode is managed by BI Publisher internally (except for interactive
report and Data Model), and does not require any change by user.

Enable SQL Pruning - applies to Oracle Database queries only that use Standard SQL. SQL pruning enhances

performance by fetching only the columns that are used in the report layout/template. Columns that are defined in

the query but are not used in the report are not fetched. This improves query fetch size and reduces JDBC rowset

memory. Oracle recommends enabling this property at individual data model level as this may give unexpected

result if data is cached and if there are multiple layouts in a report accessing the same data model.

Note: Enable SQL Pruning is also a server-level property therefore by default the data model-level
property is set to Instance Level to inherit the server or instance level setting. To turn SQL pruning on or
off for this particular data model, select On or Off from the list.

Backup Data Source ð If you have set up a backup database for this data source, select Enable Backup
Connection to enable the option; then select it when you want BI Publisher to use the backup.

¶ To use the backup data source only when the primary is down, select Switch to Backup Data Source
when Primary Data Source is unavailable. Note that when the primary data source is down, the data
engine must wait for a response before switching to the backup.

¶ To always use the backup data source when executing this data model, select Use Backup Data
Source Only. Using the backup database may enhance performance.

XML Output Options ð These options define characteristics of the XML data structure.

¶ Include Parameter Tags ð If you define parameters for your data model, select this box to include the
parameter values in the XML output file. Enable this option when you want to use the parameter value in
the report.

¶ Include Empty Tags for Null Elements ð Select this box to include elements with null values in your
output XML data. When you include a null element, then a requested element that contains no data in
your data source is included in your XML output as an empty XML tag as follows: <ELEMENT_ID\>. For
example, if the element MANAGER_ID contained no data and you chose to include null elements, it
would appear in your data as follows: <MANAGER_ID />. If you do not select this option, no entry
appears for MANAGER_ID.

¶ Include Group List Tag ð (This property is for 10g backward compatibility and Oracle Report
migration.) Select this box to include the rowset tags in your output XML data. If you include the group list
tags, then the group list appears as another hierarchy within your data.

¶ XML Tag Display ð Select whether to generate the XML data tags in upper case, in lower case, or to
preserve the definition you supplied in the data structure.

IMPORTANT NOTE ð

Å Any changes to XML Output options can impact layouts that are built on the data model.
Å Include Empty Tags for Null Elements is by default unchecked. Therefore, by default there will

be no entry for any element that has null value. If your RTF template is not designed to handle the
missing element, for example in case where dynamic cells are created in RTF template, we may see
data displaying under incorrect columns. Therefore, we recommend enabling this feature to prevent
misplaced data in report.

16 | ORACLE BI PUBLISHER BEST PRACTICES FOR SAAS ENVIRONMENTS

What Dataset to use?

BI Publisher supports a variety of data source types for creating data sets. These can be categorized into three
general types:

i. Data sets for which BI Publisher can retrieve metadata information from the source. For these data set
types, the full range of data model editor functions is supported.

Å SQL Query
Å MDX Query
Å LDAP query
Å Microsoft Excel File
Å XML File
Å CSV

ii. Data sets for which BI Publisher can retrieve column names and data type information from the data
source but it cannot process or structure the data. For these data set types, only a subset of the full
range of data model editor functions is supported.

Å Oracle BI Analysis
Å View Object

iii. Data sets for which data is generated and structured at the source and no additional modifications can be
applied by the data model editor

Å HTTP (XML Feed)
Å Web Service

SQL Query is the most recommended Data set in general. For Fusion Applications, it is recommended to use OTBI

(i.e. BI Analysis) as data source to leverage the benefits of OTBI data security, performance optimizations, ease of

use etc.

17 | ORACLE BI PUBLISHER BEST PRACTICES FOR SAAS ENVIRONMENTS

Leverage Database Capabilities

Leverage back-end system resources whenever possible

¶ Join data

¶ Filter & group data

¶ Perform expensive calculations & data transformations

¶ Sort data

Data Caching

Report Data and LOV caching can improve performance of a report significantly. The LOV caching should be

considered when a report has multiple LOVs and without caching these LOVs may take few seconds to load.

LOV parameter caching is an option available in Data Model Editor, while Report Data cache option is available in

Report Properties. Refer to Caching in Report Design best practices.

Triggers

Before Data Triggers

This is not recommended in SaaS environment.

After Data Triggers

This is not recommended in SaaS environment.

Schedule Triggers

¶ Data Model Designer creates Data Model with schedule trigger

¶ Triggers can be created and shared from a single data model

¶ Users create scheduled jobs and determine window of time to check for condition

¶ Reports execute when condition is true or are skipped

Best Practices for SQL Dataset

Only Return the Data You Need

Ensure that your query returns only the data you need for your reports. Returning excessive data risks

OutOfMemory exceptions. For example, never simply return all columns as in:

18 | ORACLE BI PUBLISHER BEST PRACTICES FOR SAAS ENVIRONMENTS

SELECT * FROM EMPLOYEES;

Always avoid the use of *.

Three best practices for restricting the data returned are:

i. Always select only the columns you need

For example:

SELECT DEPARTMENT_ID, DEPARTMENT_NAME FROM EMPLOYEES;

ii. Use a WHERE clause and bind parameters whenever possible to restrict the returned data more precisely.

This example selects only the columns needed and only those that match the value of the parameter:

SELECT DEPARTMENT_ID, DEPARTMENT_NAME

FROM EMPLOYEES

WHERE DEPARTMENT_ID IN (:P_DEPT_ID)

iii. The number of columns selected in SQL query but not used in report should not exceed 10 if SQL pruning

is not enabled

iv. Check all tables in SELECT list are properly joined to avoid Cartesian products

Use Column Aliases to Shorten XML File Length

The shorter the column name, the smaller the resulting XML file; the smaller the XML file the faster the system

parses it. Shorten your column names using aliases to shorten I/O processing time and enhance report efficiency.

In this example, DEPARTMENT_ID is shortened to "id" and DEPARTMENT_NAME is shortened to "name":

SELECT DEPARTMENT_ID id, DEPARTMENT_NAME nameFROM EMPLOYEES

WHERE DEPARTMENT_ID IN (:P_DEPT_ID)

Avoid U sing Group Filters in Data Model . Instead enhance Your Query

Although the Data Model Group Filter feature enables you to remove records retrieved by your query, this process

takes place in the middle tier, which is much less efficient than the database tier.

It is a better practice to remove unneeded records through your query using WHERE clause conditions instead.

Avoid PL/SQL fun tion Calls in WHERE Clauses

PL/SQL function calls in the WHERE clause of the query can result in multiple executions. These function calls

execute for each row found in the database that matches. Moreover, this construction requires PL/SQL to SQL

context switching, which is inefficient.

19 | ORACLE BI PUBLISHER BEST PRACTICES FOR SAAS ENVIRONMENTS

As a best practice, avoid PL/SQL function calls in the WHERE clause; instead, join the base tables and add filters.

Avoid Use of the System Dual Table

Use of the system DUAL table for returning the sysdate or other constants is inefficient and should be avoided when

not required.

For example, instead of:

SELECT DEPARTMENT_ID ID, (SELECT SYSDATE FROM DUAL) TODAYS_DATE FROM

DEPARTMENTS WHERE DEPARTMENT_ID IN (:P_DEPT_ID)

Consider:

SELECT DEPARTMENT_ID ID, SYSDATE TODAYS_DATE FROM DEPARTMENTS WHERE

DEPARTMENT_ID IN (:P_DEPT_ID)

Note that in the first example, DUAL is not required. You can access SYSDATE directly.

Avoid PL/SQL Calls at the Element Level

Package function calls at the element (within the group) or row level are not allowed; however you can include

package function calls at the global element level because these functions are executed only once per data model

execution request.

Example:

<dataStructure>

 <group name="G_order_short_text" dataType="xsd:string" source="Q_ORDER_ATTACH">

 <element name="order_attach_desc" dataType="xsd:string" value="ORDER_ATTACH_DESC"/>

 <element name="order_attach_pk" dataType="xsd:string" value="ORDER_ATTACH_PK"/>

 <element name="ORDER_TOTAL _FORMAT" dataType="xsd:string" value="

WSH_WSHRDPIK_XMLP_PKG.ORDER_TOTAL _FORMAT "/> <!-- This is wrong should not be called

within group.-->

 </group>

 <element name="S_BATCH_COUNT" function="sum" dataType="xsd:double"

value="G_mo_number.pick_slip_number"/>

</dataStructure>

20 | ORACLE BI PUBLISHER BEST PRACTICES FOR SAAS ENVIRONMENTS

Avoid Including Multiple Data Sets

It can seem desirable to create one data model with multiple data sets to serve multiple reports, but this practice

results in very poor performance. When a report runs, the data processor executes all data sets irrespective of

whether the data is used in the final output.

For better report performance and memory efficiency, consider carefully before using a single data model to support

multiple reports.

Avoid Nested Data Sets

The data model provides a mechanism to create parent-child hierarchy by linking elements from one data set to

another. At run time, the data processor executes the parent query and for each row in the parent executes the child

query. When a data model has many nested parent-child relationships slow processing can result.

A better approach to avoid nested data sets is to combine multiple data set queries into a single query using the

WITH clause.

Following are some general tips about when to combine multiple data sets into one data set:

When the parent and child have a 1-to-1 relationship; that is, each parent row has exactly one child row, then merge

the parent and child data sets into a single query.

When the parent query has many more rows compared to the child query. For example, an invoice distribution table

linked to an invoice table where the distribution table has millions of rows compared to the invoice table. Although

the execution of each child query takes less than a second, for each distribution hitting the child query can result in

STUCK threads.

Example of when to use a WITH clause:

Query Q1:

SELECT DEPARTMENT_ID EDID,EMPLOYEE_ID EID,FIRST_NAME FNAME,LAST_NAME

LNAME,SALARY SAL,COMMISSION_PCT COMMFROM EMPLOYEES

Query Q2:

SELECT DEPARTMENT_ID DID, DEPARTMENT_NAME DNAME, LOCATION_ID LOCFROM

DEPARTMENTS

Combine these two queries into one using WITH clause as follows:

WITH Q1 as (SELECT DEPARTMENT_ID DID, DEPARTMENT_NAME DNAME, LOCATION_ID LOC

FROM DEPARTMENTS),

Q2 as (SELECT DEPARTMENT_ID EDID, EMPLOYEE_ID EID,FIRST_NAME FNAME,LAST_NAME

LNAME,SALARY SAL,COMMISSION_PCT COMM

FROM EMPLOYEES)

SELECT Q1.*, Q2.*

FROM Q1 LEFT JOIN Q2

21 | ORACLE BI PUBLISHER BEST PRACTICES FOR SAAS ENVIRONMENTS

ON Q1.DID=Q2.EDID

Avoid In -Line Queries (as summary columns)

In-line queries execute for each column for each row. For example, if a main query has 100 columns, and brings

1000 rows, then each column query executes 1000 times. Altogether, it is 100 multiplied by 1000 times. This is not

scalable and cannot perform well. Avoid using in-line sub queries whenever possible.

Avoid the following use of in-line queries. If this query returns only a few rows this approach may work satisfactorily;

however, if the query returns 10000 rows, then each sub or inline query executes 10000 times and the query would

likely result in Stuck threads.

SELECT

NATIONAL_IDENTIFIERS,NATIONAL_IDENTIFIER,

PERSON_NUMBER,

PERSON_ID,

STATE_CODE

FROM

(select pprd.person_id,(select REPLACE(national_identifier_number,'-') from per_

national_identifiers pni where pni.person_id = pprd.person_id and rownum<2)

 national_identifiers,(select national_identifier_number from per_national

identifiers pni where pni.person_id = pprd.person_id and rownum<2) national_

identifier,(select person_number from per_all_people_f ppf

where ppf.person_id = pprd.person_id

and :p_effective_start_date between ppf.effective_start_date and ppf.effective_

end_date) PERSON_NUMBER

(Select hg.geography_code from hz_geographies hg

where hg.GEOGRAPHY_NAME = paddr.region_2

and hg.geography_type = 'STATE') state_code

Avoid Excessive Parameter Bind Values

Oracle database allows bind maximum of 1000 values per parameter. Binding a large number of parameter values

is inefficient. Avoid binding more than 100 values to a parameter.

When you create a Menu type parameter, if your list of values may contain many values, ensure that if you enable

both the "Multiple Selection" and "Can Select All" options, then also select NULL value passed to ensure too many

values are not passed.

22 | ORACLE BI PUBLISHER BEST PRACTICES FOR SAAS ENVIRONMENTS

The number of columns selected in SQL should not exceed 100

We should restrict the SQL query to not fetch more than 100 columns as large number of columns will have adverse

impact on report performance.

Sorting should be done in the SQL, not during report formatting

Sorting of data is highly recommended to be done at the time of data extraction and we should avoid sorting during

report formatting to improve performance.

Avoid having WHERE clause on large tables with only NOT IN or <>

Such where clause on large data set will have adverse performance impact.

SQL Query Tuning

Query tuning is the most important step to improve performance of any report. Explain plan, SQL Monitoring, SQL

Trace facility with TKPROF are the most basic performance diagnostic tools that can help to tune SQL statements in

applications running against the Oracle Database.

23 | ORACLE BI PUBLISHER BEST PRACTICES FOR SAAS ENVIRONMENTS

Oracle BI Publisher provides a mechanism to generate the explain plan and SQL monitoring reports and to enable

SQL session trace. This functionality is applicable to SQL statements executing against Oracle Database only.

Logical queries against BI Server or any other type of database are not supported.

Generate Explain Plan

You can generate an Explain plan at the data set level for a single query or at the report level for all queries in a

report. For more information about interpreting the explain plan, see the Oracle Database SQL Tuning Guide.

Explain Plan for a Single Query

From the SQL data set Edit dialog you can generate an explain plan before actually executing the query. This will

provide a best guess estimation of plan. The query will be executed binding with null values.

Click Generate Explain Plan on the Edit SQL Query dialog. Open the generated document in a text editor like

Notepad or WordPad.

Explain Plan for Reports

To generate an explain plan for a report, run the report through the Scheduler:

¶ On the New menu, select Report Job.

24 | ORACLE BI PUBLISHER BEST PRACTICES FOR SAAS ENVIRONMENTS

¶ Select the report to schedule then click the Diagnostics tab.

Note: You must have BI Administrator or BI Data Model Developer privileges to access the Diagnostics

tab.

¶ Select one or more of the options to enable SQL Explain Plan, Data Engine Diagnostic and Report

Processor Diagnostic. You can also chose to enable consolidated job diagnostic to create all the logs ï

Scheduler, Data Engine, Report Processor and Server log in one file.

¶ Submit the report.

¶ When the report finishes, go to the Report History page.

(From the Home page, under Browse/Manage, select Report Job History.)

¶ Select your report to view the details. Under Output & Delivery click Diagnostic Log to download the

explain plan output.

25 | ORACLE BI PUBLISHER BEST PRACTICES FOR SAAS ENVIRONMENTS

c

NOTE: The explain plan at Data Model level that executes a single query is recommended for report authors as it

does not execute the report, while in case of schedule job diagnostic the explain plan is executed along with the

report.

Guidelines for Tuning Queries

¶ Analyze the explain plan and identify high impact SQL statements.

¶ Add required filter conditions and remove unwanted joins.

¶ Avoid and remove FTS (full table scans) on large tables. Note that in some cases, full table scans on small

tables are faster and improve query fetch.

¶ Use SQL hints to force use of proper indexes.

¶ Avoid complex sub-queries and use Global Temporary Tables where necessary.

¶ Use Oracle SQL Analytical functions for multiple aggregation.

¶ Avoid too many sub-queries in where clauses if possible. Instead rewrite queries with outer joins.

¶ Avoid group functions like HAVING and IN / NOT IN where clause conditions.

¶ Use CASE statements and DECODE functions for complex aggregate functions.

26 | ORACLE BI PUBLISHER BEST PRACTICES FOR SAAS ENVIRONMENTS

Administration Page Configurations

The Administration page of Oracle BI Publisher has several configurations under different sections such as Data

Sources, Security Center, Delivery, System Maintenance, Runtime configuration and Integration.

In the SaaS environment, the following configurations should never be changed by Customers. These are

provisioned for every customer and maintained by Oracle CloudOps. Any change in these configuration should go

through Service Request process flow (explained under section ñProcess to initiate critical changes on BI Publisher

Serverò)

a. Security Center

o Security Configuration

o Roles and Permissions

b. System Maintenance

o Server Configurations

o Scheduler Configurations

c. Integration

o Oracle BI Presentation Services

Also note that changes to above configuration require BI Publisher application restart.

Runtime Configurations

Runtime Configurations under following sections are recommended to be handled by Customers:

a. Properties

i. PDF Output

ii. PDF Digital Signature

iii. PDF/A Output

iv. PDF/X Output

v. DOCX Output

vi. RTF Output

vii. HTML Output

viii. RTF Template

ix. PDF Form Templates

x. Flash

xi. CSV Output

27 | ORACLE BI PUBLISHER BEST PRACTICES FOR SAAS ENVIRONMENTS

xii. Excel 2007 Output

xiii. All Outputs

b. Font Mappings

c. Currency Formats

Runtime Configurations under following sections should be changed with extreme CAUTION as they will impact

report and server performance and a mistake may cause outage.

a. Properties

i. FO Processing

ii. Memory Guard

iii. Data Model

Memory Guard

Memory Guard settings are to enable administrator to restrict reports to use certain limits of JVM memory and if a

report exceeds the limit, it will fail to execute. This will protect the BI Publisher server from some unwarranted

extremely large report generation that may crash the server.

Maximum report data size for online reports

This property enables you to specify a maximum data size allowed for online report viewing. When you set a

maximum data size, and if a user runs a report that exceeds this limit, he gets the following message:

ñThe report you are trying to run exceeds the data limit set for this server. Either re-run with parameters that reduce

the data or schedule this report. Contact your Administrator if you have questions.ò

Maximum report data size for offline (scheduled) reports.

This feature enables you to specify a maximum data size allowed for scheduled reports. If the data generated is

larger than the maximum setting, the report processing is ended. The scheduled report job fails with the following

status message:

ñReport data size exceeds the maximum limit (<nnn> bytes). Stopped processing.ò

Free memory threshold

This setting enables you to specify a minimum value for free JVM space. This enables you to control whether to run

a report based on two factors: current usage and the size of the report data. This feature requires the setting of

several properties that work together. You specify the threshold JVM space, the report maximum report size that will

28 | ORACLE BI PUBLISHER BEST PRACTICES FOR SAAS ENVIRONMENTS

be allowed when the JVM falls below the threshold, and the maximum wait time to pause the report to wait for more

JVM free space to become available.

If the report data size exceeds the threshold, then the report is paused to wait for free memory to be available. The

report will wait for the time specified in the property Maximum Wait Time for Free Memory to Come Back Above

Threshold Value. If the free memory does not rise back above the minimum in the wait period specified, the report

request is rejected.

Maximum report data size under the free memory threshold

Maximum single report data size allowed when free JVM memory is under the specified threshold value set in Free

memory threshold. For example (assuming the default setting), if the data generated for a single report exceeds

one-tenth of the value set for Free memory threshold, then processing is terminated. Therefore if the Free memory

threshold is set to 100 MB and a single report data extract exceeds 10 MB, then the report processing is terminated.

This property takes effect only when Free memory threshold is set to be a positive value.

Minimum Time Span between Garbage Collection Runs

Set this value to avoid overrunning JVM garbage collection. The server enforces the minimum of 120 seconds,

which means the value will be reset to 120 seconds if it falls below the minimum.

Maximum Wait Time for Free Memory to Come Back Above the Threshold

The maximum time in seconds that a run-report request will wait for free JVM memory to come back above the

threshold value. This property value takes effect only when a positive value for Free memory threshold is specified.

If the free memory becomes available within the time specified, the request will proceed immediately to generate the

document. If free memory is still below the threshold value after the time specified, the request is rejected. For online

requests, the larger this property value, the longer the browser will wait for a request to run.

Process timeout for online report formatting

For online reports, the maximum time in seconds that a formatting process is allowed to run. If an online report

formatting process exceeds the limit, the user receives the error message:

"Formatting time (nn seconds) exceeds the limit (nn seconds). Stopped processing."

29 | ORACLE BI PUBLISHER BEST PRACTICES FOR SAAS ENVIRONMENTS

Note: Remember to be extremely cautious while changing these settings as they may negatively impact report and

server performance.

Data Model

Maximum data size limit for data generation

Maximum XML data size in that can be generated from the execution of a data model. This setting applies to both

online report requests and to requests submitted through the scheduler. When the size of the file generated by the

data engine exceeds the value set for this property, the data engine terminates execution of the data model and

throws an exception.

You can set the value in GB, MB, or KB.To turn this property off, enter 0 or a negative number.

Maximum sample data size limit

Maximum file size of a sample data file that can be uploaded to the data model editor.

30 | ORACLE BI PUBLISHER BEST PRACTICES FOR SAAS ENVIRONMENTS

Enable Data Model diagnostic

Setting this property to true will write data set details, memory, and SQL execution time information to the log file.

Oracle recommends setting this property to true only for debugging purposes. When set to true, processing time is

increased.

Enable SQL Session Trace

Setting this property to True writes a SQL session trace log to the database for every SQL query that is executed.

The log can then be examined by a database administrator.

Oracle recommends that you turn this property on only in test and development environments.

Important: To enable this property, the user that you define for the database connection must be granted the Alter

Session privilege on the database.

Scheduling & Delivery

As a part of sizing and capacity planning, we should always plan a separation of online report from batch/scheduled

jobs by time and/or by server. Running both online and scheduled jobs concurrently on same server during peak

business hours will cause performance issues and may upset the online report customers.

How to decide whether to run a Report Online/Offline (Schedule)

Running reports in interactive/online mode uses in-memory processing. Use the following guidelines for deciding

when a report is appropriate for running online.

For Online / Interactive mode:

¶ When report output size is less than 50MB

Browsers do not scale when loading large volumes of data. Loading more than 50MB in the browser will

slow down or possibly crash your session.

¶ Data model SQL Query time out is less than 600 seconds

Any SQL query execution that takes more than 600 seconds results in Stuck WebLogic Server threads. To

avoid this condition schedule long-running queries. The Scheduler process uses its own JVM threads

instead of Weblogic server threads. It is more efficient to schedule reports than run reports online.

¶ Total number of elements in the data structure is less than 500

When the data model data structure contains many data elements, the data processor must maintain the

element values in memory; which may result in OutOfMemory exceptions. To avoid this condition,

schedule these reports. For scheduled reports, the data processor uses temporary file system to store and

process data.

¶ No CLOB or BLOB columns

Online processing holds the entire CLOB or BLOB columns in memory. You should schedule reports that

include CLOB or BLOB columns.

31 | ORACLE BI PUBLISHER BEST PRACTICES FOR SAAS ENVIRONMENTS

Scheduler Database Management

Turn off saving of XML data if very large reports are to run and growing database size is a concern

Scheduling Tips

¶ Use scheduler history page and hover over status detail field to monitor the job execution status (time

taken, stage in which the job is currently at, which server runs the job, etc)

¶ Schedule the jobs to avoid maintenance window.

¶ Scatter the jobs to distribute the load uniformly over a period of time. Do not clutter all jobs in a short

period of time.

¶ User should run critical scheduled jobs during off-hours when fewer resources are shared by other

processes, or run them on a dedicated bi server where on-demand queries are running on a different

server.

¶ Administrator can use Scheduler Diagnostics page to check the health of scheduling engine and to

observe number of deliveries in different queue

¶ When a job is interrupted due to maintenance shutdown the job will be marked as failure when server is

back up again. Manual resubmission is needed.

Report Customization

Several Oracle products that integrate with Oracle BI Publisher, ship canned or pre-packaged reports. Often there is

a need to customize certain reports to fit to the organizational requirement. Oracle BI Publisher provides a report

customization feature (only available through /xmlpserver URL) to help with customization.

32 | ORACLE BI PUBLISHER BEST PRACTICES FOR SAAS ENVIRONMENTS

When you select the Customize option for a report, BI Publisher creates a copy of the report in the "Custom" folder.

This custom copy is linked internally to the original report. You can customize the custom copy of the report, leaving

the original report intact. When users initiate a request to run the original report, whether from the BI Publisher

catalog or through an application process, BI Publisher detects the customized version and runs your custom

version instead.

The Customize feature provides the following benefits:

¶ Enables a customization process that mimics the convenience of an "in-place" customization. BI Publisher

automatically creates the copy and the mapping.

¶ Removes the requirement to edit calling processes or applications to execute the custom report. Although

you customize the copy, BI Publisher automatically sends all requests to run the original report to the

custom copy instead.

¶ Removes the risk of patches overwriting your customizations of prepackaged Oracle reports.

Important Note:

¶ The Customize option is available only for reports. The Customize option is not available for data

models, style templates, or sub templates.

To customize data models, style templates or sub templates and insulate them from potential changes

from patching, make a copy of the data model, style template, or sub-template and either rename it or

place it in a custom directory. Ensure that you update any reports to point to the customized data model,

style template, or sub-template.

To copy a data model (or Style template or sub template), select the data model and use copy icon from

the set of icons above the Folders accordion pane or by clicking on ñcopyò from Tasks pane.

33 | ORACLE BI PUBLISHER BEST PRACTICES FOR SAAS ENVIRONMENTS

Once copied, the paste icon is activated in Folders Pane and Tasks Pane. Create a Data Model folder in

the Custom Folder under the appropriate report folder and then paste the data model object. The Custom

Report needs to point to this copied data model.

¶ The security grants applied to the original report and folder hierarchy are not copied to the report created

in the Custom folder. You must manually apply the security settings for the reports and folders that are

created by the Customize feature in the Custom folder.

¶ When creating Custom Data Model, follow the guidelines and best practices of Data Model Creation.

